sexta-feira, 28 de dezembro de 2012

Concreto Biológico.


Pesquisadores espanhóis desenvolveram um concreto biológico do qual crescem líquens e musgos naturalmente depois que a construção fica pronta.


O objetivo é criar prédios com "fachadas vivas", de forma a melhorar o conforto térmico interno e evitar gastos de energia com aquecimento e ar-condicionado, dependendo da estação.
Segundo a equipe, a incorporação dos microrganismos no próprio concreto oferece vantagens ambientais, térmicas e ornamentais em relação a outras técnicas de arquitetura verde.
"A inovação deste novo concreto é que ele se comporta como um suporte para o crescimento biológico natural e o desenvolvimento de certos organismos biológicos, particularmente certas famílias de algas, fungos, líquens e musgos," afirmam Antonio Aguado e seus colegas da Universidade de Granada.
"A ideia é também que as fachadas construídas com o novo material mostrem uma evolução temporal por descoloração, dependendo da estação do ano, bem como da família de organismos predominantes. Com esta técnica podemos evitar o uso de outras vegetações, para evitar que as raízes estraguem a construção," concluem.
Cimento com semente
Para viabilizar o projeto, equipe desenvolveu uma técnica para o crescimento acelerado dos microrganismos a partir de materiais à base de cimento.
O primeiro protótipo usa um derivado carbonatado do cimento Portland tradicional, de forma a obter um pH em torno de 8.
O segundo protótipo usa um cimento de fosfato de magnésio, um aglomerante que é ligeiramente ácido, dispensando tratamento para redução do pH.
Para garantir a colonização do material pelos microrganismos, os pesquisadores também ajustaram a porosidade e a rugosidade do concreto.
O processo foi patenteado, mas os pesquisadores trabalham ainda para acelerar ainda mais o crescimento dos líquens - o objetivo é que a fachada verde fique atraente em no máximo um ano depois do término da construção.
Concreto biológico
O concreto biológico consiste de uma placa de concreto, que faz o papel de elemento estrutural, à qual são adicionadas três camadas.
A primeira é de impermeabilização, evitando que a umidade passe para dentro do edifício.
A segunda é a camada biológica propriamente dita, com uma estrutura interna que permite a captação de água da chuva para os musgos e líquens.
Por último, é aplicada uma camada de impermeabilização inversa, que garante a manutenção da umidade na segunda camada.
Fonte.: http://www.inovacaotecnologica.com.br

quarta-feira, 26 de dezembro de 2012

Piso Intertravado.





O pavimento intertravado está entre as alternativas sustentáveis da construção civil. Sua utilização, principalmente em calçadas, estacionamentos e áreas de lazer, reduz o consumo de energia elétrica devido a seu poder de reflexão até 30% superior ao do pavimento flexível, o que permite economia ao sistema de iluminação pública. Um benefício relacionado à coloração clara desses blocos de assentamento, segundo o engenheiro Ricardo Moschetti, gerente regional da Associação Brasileira de Cimento Portland (ABCP). 

Outra vantagem está no fato de serem fabricados em peças pré-moldadas, aplicadas sobre uma camada de areia para assentamento e uma camada de base, que travam umas às outras, como em um quebra-cabeça, sem exigir tempo de cura, quebra do piso, além de não gerar resíduos sólidos e não exigir insumos para sua recomposição. Os pavimentos intertravados de concreto também podem ser permeáveis. Por sua capacidade de drenagem, o sistema permite a infiltração da água, colaborando na redução das superfícies impermeabilizadas nas cidades. 

 “O piso intertravado é o único que pode ser retirado e reutilizado, permitindo a liberação imediata do tráfego depois de instalado. O correto espaçamento entre as peças e uma camada de base granular, que funcione como filtro para a água da chuva, garantem eficiência na drenagem”, explica Moschetti. O sistema propicia uma desaceleração da chegada da água do terreno ao sistema de drenagem urbano, fator que já é levado em conta em projetos de grande porte como indústrias, shopping centers e supermercados. Do ponto de vista arquitetônico e paisagístico, as formas, cores e texturas dos blocos são aliados na composição de paisagens urbanas bonitas e versáteis, já que a sinalização pode ser incorporada ao pavimento. 

A ABCP disponibiza cartilhas com orientações sobre o piso intertravado de concreto simples e intertravado permeável.  As cartilhas “Melhores Práticas – Pavimento Intertravado Permeável” e sobre pavimento intertravado simples estão disponível para download no site www.solucoesparacidades.org.br  

Fonte.: http://www.mapadaobra.com.br

sábado, 29 de setembro de 2012

Contenção monitorada

Obra de torre comercial na Avenida Paulista, em São Paulo, emprega paredes-diafragma e estacões intercalados com colunas de solo-cimento. Proximidade do metrô exige rigoroso controle de recalques.

As obras das fundações da Torre Matarazzo, localizada na Avenida Paulista, estão caminhando a passos largos no terreno que abrigava a antiga mansão da família. O empreendimento, idealizado pela Cyrela Commercial Properties e pela Camargo Corrêa Desenvolvimento Imobiliário, é composto pela torre de escritórios triple A, de 22 mil m2 de área privativa total, e pelo Shopping Cidade São Paulo, com 17,5 mil m2 de área bruta locável.
Para abrigar os sete subsolos da Torre Matarazzo
e do Shopping Cidade São Paulo, escavação
 de aproximadamente 9 mil m
2 e 25 m
 de profundidade movimentou cerca de 250 mil m
3 de terra .
A fase de execução de fundações deve durar 15 meses, quase um terço do cronograma total da obra, planejado para 47 meses. O terreno de 12 mil m2 localiza-se na confluência das Ruas São Carlos do Pinhal, Pamplona e Avenida Paulista. A escavação, com cerca de 25 m de profundidade, abrigará sete subsolos e tem exigido planejamento criterioso, além de cuidados redobrados devido à proximidade do túnel da Linha 2 - Verde do Metrô de São Paulo, e à preocupação com a segurança do intenso fluxo de pessoas na avenida. A logística abrangeu desde a mobilização dos equipamentos, que só podem chegar à obra à noite e entrar em funcionamento de dia, até o fornecimento de aço e concreto em horários especiais, de acordo com as exigências da Companhia de Engenharia de Tráfego (CET). Por isso, foi realizado um estudo profundo da execução desde 2009.

Resumo da obra
Torre Matarazzo e Shopping Cidade São Paulo
Realização: Cyrela Commercial Properties e Camargo Corrêa Desenvolvimento Imobiliário
Construção: Cyrela
Área privativa (Torre Matarazzo): 22 mil m2
Área bruta locável (Shopping Cidade de São Paulo): 17,5 mil m2
Área do terreno: 12 mil m2

Contenção junto à Rua Pamplona tem
estacões de  1,20 m de diâmetro intercalados
 com colunas executadas com injeção
 de calda de cimento a alta pressão
 sem ar comprimido, técnica conhecida
 como Chemical Churning Pile (CCP)
A primeira fase das obras de infraestrutura consistiu na execução de cerca de 10 mil m2 de paredes-diafragma. Nas divisas com a Rua São Carlos do Pinhal e o prédio vizinho, as paredes moldadas in loco, com clam shell, formam lamelas de 3,20 m, com 40 cm de espessura. Na face da Avenida Paulista, as lamelas medem 2,5 m, com 50 cm de espessura. O clam shell escavou paredes entre 30 m e 35 m de profundidade, sempre posicionado na parte superior do terreno. Em seguida, teve início a escavação da caixa do subsolo com uma área de 9 mil m², cuja movimentação foi de cerca de 250 mil m3 de terra.

CCP e estacões 
No entanto, na divisa da lateral com a Rua Pamplona, inicialmente foi projetada uma parede-diafragma com 1 m de espessura, em função das cargas concentradas nos pilares resultantes dos grandes vãos das lajes exigidos nesse tipo de empreendimento corporativo. Porém, o elevado volume de concreto fez com que fosse adotada uma outra técnica. A solução foi executar estacões, ou estacas escavadas justapostas, com 1,20 m de diâmetro, para formar a parede de contenção, cujos espaços vazios foram preenchidos com colunas de Chemical Churning Pile (CCP) de 80 cm de diâmetro.


A técnica consiste em utilizar perfuratrizes com bomba para injeções de calda de cimento a alta pressão (400 bar a 900 bar) por meio de jatos horizontais a uma velocidade de cerca de 250 m/s. Em função do movimento de rotação do equipamento, mesmo sem escavação prévia, o solo se desagrega e se mistura com a calda de cimento, criando um composto de solo-cimento na forma de colunas com seção circular, com alta resistência e estanqueidade, impermeabilizando o solo. Essa nata é injetada com bicos de 2 mm a 3 mm de diâmetro na terra. A técnica de CCP permite a execução de colunas de diâmetro médio entre 40 cm e 80 cm sem a utilização de ar comprimido (característica do jet grouting, indicado para colunas de diâmetro médio entre 90 cm e 180 cm).




Durante a execução das colunas, o jato funciona como destruidor do terreno, criando uma 'sopa'. O equipamento perfura o solo na descida e, quando sobe, libera a nata de cimento. O excedente que extravasa é recolhido para ser destinado a um bota-fora ou para outra utilização", explica Milton Golombek, diretor da Consultrix, empresa responsável pelo projeto de fundações da Torre Matarazzo. Segundo Golombek, essa solução foi concebida para suportar as cargas concentradas dos pilares da torre, que estarão posicionados sobre essa cortina, com valores da ordem de 3 mil a 4 mil toneladas cada. O coroamento dessa parede foi realizado com uma viga de grandes proporções. "Podemos dizer que as estacas são quase justapostas, pois há uma distância pequena entre elas. Tivemos ainda uma forte preocupação em garantir o prumo desses estacões, que, no final, ficaram com a verticalidade perfeita", destaca ele.

Solução competitiva 

Segundo Clovis Salioni, presidente da Associação Brasileira de Empresas de Engenharia de Fundações e Geotecnia (Abef) e diretor-superintendente da Geosonda, empresa responsável pela execução das fundações, as técnicas de estacas escavadas com CCP ou jet grouting já são soluções bem conhecidas no Brasil e no mundo. "Porém, é pouco usual em empreendimentos imobiliários. Essa técnica geralmente é empregada em obras de grande porte, como metrô. Mas revelou-se uma solução competitiva em termos de custos e prazo". A opção pelas estacas escavadas com CCP também se deve ao solo do terreno, composto de sessões de limonita (minério de ferro), que formam lâminas bem duras, com camadas de 20 cm até 80 cm de espessura.

Clique na imagem para
ampliar
Tirantes da parede de contenção na divisa com a Avenida Paulista foram executados em ângulos diferentes, com cuidado para não interferirem no túnel do metrôDetalhe - estacas escavadas e CCP


Marcelo Scandaroli
Central de produção de calda de cimento
O CCP gerou colunas com 22 m de profundidade, impedindo o fluxo de água do terreno, além da função de contenção. Segundo Salioni, o solo local é bom e o lençol freático fica a 12 m de profundidade. O túnel do metrô está na lateral da obra e passa no leito da Avenida Paulista. Porém, as fundações do prédio são bem mais profundas (até 49 m) que os túneis, que estão a 20 m de profundidade. Por esse motivo, foi necessário contratar instrumentação remota durante as obras de infraestrutura para monitoramento de toda a região. "Foi realizado um mapeamento detalhado do subsolo, com farta documentação do trecho, para impedir qualquer surpresa", explica Salioni. Para a execução dos estacões, a Geosonda está utilizando equipamentos como a perfuratriz de 90 toneladas equipada com haste telescópica. O primeiro passo é a escavação com um fluido à base de polímeros que promove a sustentação e a impermeabilização do solo, em substituição à lama bentonítica. Depois, é colocada a madeira e feita a concretagem por bombeamento de baixo para cima, ao mesmo tempo em que o fluido é bombeado. Esse fluido não polui o solo como a bentonita, que promove a sua impermeabilização permanente. Quando a terra é retirada e levada para o bota-fora, acaba prejudicando a drenagem. A nova solução, biodegradável, é formulada com cadeias de carbono que se desfazem em pouco tempo, mantendo as mesmas características da bentonita. O empreendimento tem ao todo 289 estacas escavadas. De acordo com Salioni, o ritmo da obra é a execução de até dois estacões por dia. "Há o cuidado com o controle de ruídos dos equipamentos, dotados de câmara de isolamento acústico. Os guindastes dão apoio ao trabalho. A distância entre os estacões varia de acordo com o trecho. É um mar de estacas, com blocos de fundação de até 66 mil toneladas. Há blocos tão grandes que parecem até radiers", descreve Salioni.


Próximo à Rua Pamplona e também abaixo do túnel, estão locados tirantes inclinados, que evitam proximidade com essas estruturas. O comprimento dos tirantes chega a 40 m.Tirantes monitorados 

Devido à proximidade com túneis do metrô, a obra está passando por monitoramento constante de recalques do pavimento asfáltico da Avenida Paulista. Também estão sendo registrados os deslocamentos provocados pela escavação da obra e a convergência com o túnel do metrô. Tanto que para evitar qualquer risco desse tipo, nos dois "cantos" da parede-diafragma na divisa com a Avenida Paulista foi utilizado escoramento metálico robusto para substituir os tirantes.
A instalação seguiu uma sequência que se inicia com a perfuração baseada no comprimento total do tirante, executando os furos com uma perfuratriz de 10 t a 15 t. Depois, são instalados os tubos de revestimento em PVC, que abrigam de 12 a 14 cabos de aço cada. Esses tubos são preenchidos, em parte, com calda de cimento, sob pressão. São deixados trechos livres de cimento para que cada tirante possa trabalhar de acordo com as determinações do projeto. A ancoragem dos tirantes é feita com protensão normal. No total, a obra conta com mais de 21 mil m de tirantes com capacidade entre 35 tf a 140 tf.
Salioni ressalta que tanto do ponto de vista técnico, quanto do cronograma, a obra está adiantada e atende às especificações. "O plano de ataque foi bom. Essa obra mostra que a engenharia de fundações no Brasil é altamente capacitada não só por parte do cliente, mas também por parte dos projetistas e executores", destaca Salioni.


Ficha técnica
Desenvolvimento do projeto: Cyrela Commercial Properties/Camargo Corrêa Desenvolvimento Imobiliário;
arquitetura: Aflalo & Gasperini;
projeto de fundações: Consultrix;
sondagens: Geocel; fundações e infraestrutura: Geosonda



Confira outras imagens da obra
Crédito: divulgação Geosonda
Na face do terreno voltado para a Rua Pamplona, contenção foi
feita com estacões intercalados com colunas de solo-cimento do
tipo Chemical Churning Pile (CCP). Tirantes alinhados
foram dispostos a 1,50 m de distância entre si

Crédito: divulgação Geosonda
Detalhe de uma coluna de solo-cimento do tipo Chemical Churning Pile (CCP)

Fotos: Marcelo Scandaroli
Solo do terreno apresenta ocorrências de limonita (minério de ferro),
que formam lâminas bem duras, com camadas de 20 cm até 80 cm de espessura

Fotos: Marcelo Scandaroli
Ângulo dos tirantes executados na parede diafragma junto à
avenida Paulista foi cuidadosamente estudado para não
 interferir no túnel do metrô

Pirâmide londrina

Com 306 m de altura, The Shard é o
edifício mais alto da Europa,
mas logo deve ser ultrapassado
por quatro torres atualmente em construção
em Moscou

Edifício mais alto da Europa emprega estrutura híbrida e soluções inovadoras para transporte vertical


RESUMO DA OBRA

The Shard

Altura: 306 m

Pavimentos: 72 públicos e 15 técnicos
Área construída: 126.712

Inaugurado em julho, o edifício The Shard, torre de vidro que se destaca no horizonte de Londres, detém hoje o título de prédio mais alto da Europa, com 306 m de altura. Assinado pelo arquiteto italiano Renzo Piano, o projeto contempla um conjunto de uso misto - ou uma "cidade vertical", nas palavras do projetista - com escritórios, hotel, restaurantes e apartamentos residenciais, além de pavimentos técnicos e um mirante com vista panorâmica da capital inglesa.
A intenção do arquiteto era criar um edifício de uso estratificado de acordo com a altura dos pavimentos. O volume piramidal esbelto que Piano atribuiu à torre vai ao encontro dessa necessidade: nos pavimentos mais baixos, onde as lajes são mais generosas, ficam os ambientes de escritórios, que exigem espaços mais amplos e flexíveis; o trecho médio do edifício, com espaços medianos, foi destinado às instalações de restaurantes e um hotel cinco estrelas; nos últimos pavimentos, com lajes menores e vista mais nobre, ficam os apartamentos residenciais de altíssimo padrão.


Estrutura

Pilares metálicos são posicionados no
terreno para compor o núcleo de concreto, 

espinha dorsal da torre, tornando possível
sua execução ao mesmo tempo em
que avançassem as escavações dos subsolos
Para tornar viável a construção do The Shard, o projeto estrutural do escritório WSP Cantor Seinuk combinou sistemas construtivos diferentes, harmonizando as demandas de cada trecho da torre. O principal elemento da estrutura é um núcleo rígido de concreto moldado in loco com projeção de 22 m x 19 m e 244 m de altura, que garante a segurança relacionada às forças horizontais dos ventos e à estabilidade em situação de sismos. Ele abriga também as prumadas das instalações prediais, os elevadores e escadas de emergência.

A partir do núcleo, foram construídos os pavimentos. Até o 39º andar onde ficam os escritórios, os restaurantes e os espaços comuns do hotel, a estrutura reticulada é composta por vigas e pilares metálicos e lajes steel deck com concreto leve, que viabilizaram vãos de até 15 m entre a fachada e o núcleo de concreto.
Já nos pavimentos do trecho médio (40º ao 68º), onde ficam os quartos do hotel e os apartamentos residenciais, os pilares são de concreto moldado in loco de alta resistência, com fck variando de 65 MPa a 80 MPa, para minimizar as dimensões de sua seção. Nesses níveis, as lajes são protendidas, garantindo vãos de até 9 m e o adequado isolamento acústico entre os quartos do hotel e as unidades residenciais. A partir do 69º andar, onde ficam o mirante público e pisos técnicos, o edifício volta a ter estrutura metálica.

Construção invertida

As obras do edifício The Shard começaram em março de 2009 e deveriam ser concluídas antes da Olimpíada de 2012. Como em toda obra de edificações, as etapas de escavação do terreno e das fundações da torre constituíam atividades críticas no planejamento.

A solução encontrada para reduzir em quatro meses o cronograma de execução do empreendimento foi o método da construção invertida, em que as escavações dos três subsolos e o núcleo de concreto eram executados ao mesmo tempo. Primeiro, foi executada a contenção do terreno com estacas escavadas de 90 cm de diâmetro.
Depois, foram escavadas e concretadas as estacas de 1.500 mm de diâmetro a mais de 50 m de profundidade, encabeçadas por pilares metálicos. A precisão do alinhamento vertical é garantida por um sistema de medição a laser, e a estabilidade do conjunto por contraventamentos. Foi feita então a concretagem da laje do térreo, em concreto armado, e da seção inicial do núcleo estrutural da torre. Assim, os trabalhos de escavação dos três subsolos poderiam seguir durante a execução da superestrutura. Todos os trabalhos foram realizados com técnicas que minimizavam as vibrações para não causar danos às construções vizinhas - o canteiro é circundado por edifícios tombados pelo patrimônio histórico, linhas de metrô e redes de infraestrutura urbana.
A laje de fundo do terceiro subsolo, que sob o núcleo de concreto tem 3 m de espessura, precisava ser executada rapidamente para não atrasar a evolução da superestrutura. Em uma atividade contínua que durou 32 horas durante a Páscoa de 2010, foram aplicados cerca de 5,5 mil m³ de concreto, em uma operação que mobilizou cerca de 750 caminhões-betoneira.
No restante da estrutura, foram empregadas 26 diferentes dosagens do concreto, além de bombas de alta pressão, para atender às diferentes necessidades referentes às condições climáticas e à altura onde as concretagens eram realizadas.



1. Primeiro, foram executadas as contenções do terreno, as fundações e os pilares metálicos. Em torno da cabeça dos pilares foi executado o trecho inicial do núcleo de concreto

2. Após a concretagem da laje do térreo, inicia-se a escavação dos três subsolos em torno dos pilares devidamente contraventados. Ao mesmo tempo, segue a execução da superestrutura.


3. Quando as escavações terminam, finalmente é executado o trecho de subsolo do núcleo de concreto, que torna os pilares metálicos redundantes. A laje de fundo - que chega a ter 3 m de espessura - é executada de uma só vez, em uma operação que aplicou 5.500 m³ de concreto durante 32 horas ininterruptas.



Pilares periféricos

O projeto arquitetônico previa diferentes espaçamentos entre as colunas da fachada conforme a altura do edifício. Assim, no nível dos escritórios, o espaçamento entre os pilares inclinados seria de 6 m, reduzindo-se pela metade (3 m) nos andares dos restaurantes, hotéis e apartamentos e para 1,5 m nos pavimentos técnicos do topo da torre.
Michel Denancé
Transporte vertical de materiais e trabalhadores foi um dos grandes desafios da obra, que empregou a grua mais alta do Reino Unido
Para garantir a adequada transferência de carga, foi necessário projetar vigas de transição em diferentes pontos da estrutura, principalmente na porção média da torre. Nos pavimentos inferiores, os pilares tubulares foram preenchidos com concreto para aumentar sua rigidez.
Nesse trecho do edifício, o arquiteto também projetou uma extensão horizontal da torre que cria um pequeno volume anexo, chamado de backpack, para eventuais expansões dos escritórios. Além da descontinuidade na fachada, criou-se a necessidade de aumentar os vãos entre os pilares para garantir a flexibilidade de layout nos andares. Estruturas triangulares de transição nos pavimentos superiores foram projetadas para distribuir horizontalmente as cargas da fachada. O backpack conta com um núcleo secundário de concreto moldado in loco que assegura que eventuais esforços horizontais aos quais seja submetido não sejam transferidos para a torre principal, evitando movimentos de torção que pudessem afetar a estabilidade global.





Máquina alemã faz túnel do metrô do Rio

A entrega oficial do equipamento aconteceu na
fábrica Herrenknecht -
Tunnelling Systems,
localizada em Schwanau, na Alemanha

O Governo do Estado do Rio de Janeiro e a Concessionária Rio Barra, responsável pelas obras da Linha 4 do Metrô (Barra da Tijuca – Ipanema), receberam nesta quinta-feira, o Tunnel Boring Machine (TBM), ‘Tatuzão’. O equipamento vai perfurar os túneis subterrâneos da Linha 4 do Metrô de Ipanema à Gávea sem passar por baixo de edifícios. Também não haverá bate-estaca, explosões e aberturas de valas na superfície ao longo das ruas.

A entrega oficial do equipamento aconteceu na fábrica Herrenknecht, Tunnelling Systems, localizada em Schwanau, na Alemanha, com a presença do secretário de Estado da Casa Civil, Regis Fichtner, e representantes da RioTrilhos e da Concessionária Rio Barra.

- Este é um importante momento para o Rio de Janeiro porque damos um salto nesse grandioso projeto para a cidade, que é a Linha 4 do Metrô. Essa máquina foi construída com uma tecnologia muito avançada capaz de perfurar dois tipos diferentes de solo: rocha e areia. Graças ao equipamento será possível escavar todos os túneis do metrô na Zona Sul sem abrir buracos ao longo das ruas. Eles serão construídos por baixo das vias sem impacto na superfície – afirmou Regis Fichtner.

A chegada do ‘Tatuzão’ ao Brasil está prevista para o início de 2013. O equipamento será montado de março a agosto de 2013, quando deverá entrar em operação, partindo da Estação General Osório em direção à Gávea.
Com 2 mil toneladas e 120 metros de comprimento por 11,5 metros de diâmetro (o equivalente a um prédio de quatro andares), o ‘Tatuzão’ escava de 15 a 18 metros de túnel por dia, quatro vezes mais rápido que os métodos utilizados anteriormente no Rio de Janeiro. Inédito no Rio de Janeiro, trata-se do maior ‘Tatuzão’ da América Latina e o maior equipamento já utilizado em obras no Brasil. Ele será transportado de navio da Europa para o Rio de Janeiro em 20 contêineres e com outras 100 peças grandes soltas.
Ao mesmo tempo em que escava, o ‘Tatuzão’ instala imediatamente os anéis de concreto que formam o túnel. Esse é um método moderno, seguro e usado em todo o mundo. Graças a ele, nos 5,7 km de obras na Zona Sul, será necessário interditar apenas 500 metros de vias.
Mais de 200 profissionais brasileiros e alemães vão operar o ‘Tatuzão’ no Rio
A Linha 4 do Metrô terá 270 pessoas trabalhando exclusivamente para operar o TBM (‘Tatuzão’). Serão eletrotécnicos, mecânicos, operadores e encarregados, que se dividirão em três turnos. Três profissionais brasileiros estão sendo treinados na Alemanha, país onde a máquina foi construída e de onde virão outros 30 técnicos para trabalhar na operação e manutenção da máquina.
‘Tatuzão’ poderá ser usado na construção da linha Gávea-Centro
Durante o evento de entrega do TBM na Alemanha, o secretário Regis Fichtner informou que o Governo do Rio de Janeiro iniciou os estudos para fazer um termo de referência para a contratação de projeto de expansão do metrô que ligará a Gávea ao Centro, passando pelos bairros de Jardim Botânico, Humaitá e Laranjeiras. Projeto que poderá ser colocado em prática a partir de 2016.
- Queremos deixar esse projeto pronto e licitado para que, no futuro, quando terminar a obra da Linha 4, seja possível ao Governo do Estado utilizar o ‘Tatuzão’ nessa nova linha – disse Regis Fichtner.
Linha 4 do Metrô vai beneficiar mais de 300 mil pessoas por dia
A Linha 4 do Metrô do Rio de Janeiro (Barra da Tijuca – Ipanema) vai transportar, a partir de 2016, mais de 300 mil pessoas por dia e retirar das ruas cerca de 2 mil veículos por hora/pico. Com a nova linha, o passageiro poderá utilizar todo o sistema metroviário da cidade com uma única tarifa.
- O Governo do Estado está implantando a Linha 4 do Metrô porque é inquestionável a eficiência deste sistema de transporte e sua importância para o desenvolvimento do Rio de Janeiro. O metrô tem enorme capacidade de carregamento e traz efeitos benéficos para o trânsito e ao meio ambiente, retirando das ruas carros e ônibus. Trata-se da realização de um antigo sonho dos cariocas. A população do Rio de Janeiro será beneficiada pela obra, que vai integrar bairros e regiões da cidade com rapidez, comodidade e segurança – ressalta o secretário de Estado da Casa Civil, Regis Fichtner.
As obras foram iniciadas em junho de 2010 pela Barra da Tijuca e serão concluídas em dezembro de 2015, quando as seis estações (Nossa Senha da Paz, Jardim de Alah, Antero de Quental, Gávea, São Conrado e Jardim Oceânico) serão inauguradas. Já são mais de 3 mil metros de túneis escavados entre a Barra da Tijuca e Gávea. A nova linha, com aproximadamente 16 quilômetros de extensão, entra em operação no segundo semestre de 2016, após passar uma fase de testes.
Para garantir a eficiência do sistema e comodidade dos passageiros, serão comprados 17 trens para operar a Linha 4, com capacidade para transportar mais de 1 milhão de passageiros por dia, quando a demanda estimada para a Linha 4, em 2016, é de 300 mil usuários/dia. O intervalo entre as composições será de quatro minutos.
O metrô é o meio de transporte de massa mais ambientalmente correto porque retira veículos da rua, reduzindo a emissão de gás carbônico do ar que respiramos.

quinta-feira, 2 de agosto de 2012

Três desafios que impedem Brasil de ser um país de engenheiros


A Confederação Nacional da Indústria (CNI) estima que, até 2014, o Brasil vai demandar 90 mil novos engenheiros no mercado de trabalho, somados aos 854 mil inscritos hoje no Conselho Federal de Engenharia e Agronomia (Confea). Tal número já é considerado praticamente inalcançável, na avaliação da própria CNI.


Com isso, o país importa mão de obra e aumenta os salários de quem já está dentro do mercado. De 2011 para cá, 6 dos 20 cargos que mais tiveram valorização salarial são engenharias, segundo o site de emprego Catho. O salário médio para um profissional na área de petróleo e gás passou de 5,6 mil reais para 8,8 mil reais entre um ano e outro, com uma valorização de 55%.

Entre 2001 e 2010, o número de formandos em Engenharia mais do que duplicou, saindo de 18 mil para mais de 41 mil. Os números de cursos e vagas cresceram de maneira exponencialmente maior que o PIB. Para o Confea, o Brasil começou a responder ao estímulo por desenvolvimento depois da letargia econômica das décadas de 80 e 90.

Mesmo assim, ainda estamos atrás na corrida por tecnologia. Dados do Banco Mundial compilados pelo professor da Faculdade de Engenharia da Universidade Federal de Juiz de Fora (UFJF), Vanderli de Oliveira, mostram que 27% dos estudantes da Rússia estão matriculados em cursos relacionados à tecnologia, incluindo engenharia, enquanto no Brasil são 9% e, na China, 14%.

Confira três mudanças que o Brasil precisa levar adiante para ficar em dia com os profissionais engenheiros:

1) Educação na base

Desafio: fazer mais gente se interessar por engenharia
Na última edição do PISA, o teste internacional de avaliação da educação, o Brasil não foi bem em ciência e leitura (para ambas as disciplinas ficou na 53ª posição, de um total de 65 países), mas foi um pouquinho pior em matemática (57º). Trata-se de um sintoma de fácil detecção: muitos alunos preferem passar longe dos números.

Embora alguns cursos de engenharia já há alguns anos estejam entre os mais concorridos nas universidades públicas (no vestibular da USP do ano passado, engenharia civil ficou à frente de medicina), quase 40% das vagas ficam ociosas, com concentração nas universidades particulares. Ter mais engenheiros no Brasil significa conseguir que mais alunos não tenham medo - e gostem - de matemática e física.

2) Evasão

Desafio: quem quiser engenharia, tem que querer ficar até o final
Dos alunos que começam algum curso de engenharia, 43% não o terminam, segundo a Associação Brasileira de Educação em Engenharia (Abenge). A grande maioria desiste logo nos primeiros dois semestres. Ou seja, dos brasileiros que se dispõem a enfrentar os números, grande parte acaba desistindo no meio da empreitada.

3) Engenheiros fora da engenharia

Desafio: quem cursar e concluir engenharia, tem que visualizar carreira na área
Quando a CNI calcula que o Brasil vai precisar de 90 mil engenheiros até 2014, pode não parecer tão difícil, já que a estimativa é de que em 2011 tenham sido formados 47 mil.

“Mas dos que se formam, apenas 2 em cada 7 vão de fato trabalhar com engenharia. Ou seja, eu preciso de muito mais formados. Como serão demandados 90 mil engenheiros, teriam que se formar 321 mil profissionais. Quer dizer, se eu não mudar o cenário atual, vou ter um déficit de 48 mil engenheiros”, afirma Luis Gustavo Delmont, analista de desenvolvimento empresarial do IEL/CNI.

O fato é que o Brasil precisa dos engenheiros para crescer. E os engenheiros só vão se interessar pelo Brasil se o país crescer. Segundo o Instituto de Pesquisa Econômica Aplicada (IPEA) em 2010 mostram que a demanda por engenheiros no país aumenta 7% quando o PIB brasileiro sobe 3%. Quando a economia cresce 7%, a procura por engenheiros aumenta 13%.


Fonte.: 
http://exame.abril.com.br

sexta-feira, 13 de julho de 2012

Mercado (ainda mais) atraente


Da Redação - Correio Braziliense


14/11/2011 11:25

Bruno Peres/CB/D.A Press
Versátil: Adelcke tem uma empresa de consultoria hoje, mas já fez de tudo um pouco em seus 39 anos de profissão
A Copa do Mundo de 2014 e as Olimpíadas de 2016 são sinônimos de novos empregos para os anfitriões brasileiros. Haverá demanda por trabalhadores de áreas como hotelaria, transporte, atendimento e tradução de idiomas, que já estão em fase de capacitação e aperfeiçoamento para atuar durante os eventos. Outras profissões, contudo, já colocaram a mão na massa. É o caso do engenheiro civil, responsável por projetar, gerenciar e executar obras como estádios, ginásios, estradas, aeroportos e edifícios, além de barragens, canais e portos. Para garantir a estrutura do país que receberá as duas principais competições esportivas mundiais, o trabalho desse profissional já começou. E as oportunidades só tendem a aumentar, especialmente nas cidades sede.

O paulista Adelcke Rossetto, 62 anos, conhece bem a profissão: é engenheiro civil há 39 anos. Graduou-se na Universidade de Brasília (UnB), trabalhou em prefeituras, já foi empregado nos estados de Mato Grosso, Mato Grosso do Sul e Rio Grande do Sul e, há 11 anos, tem uma empresa de consultoria na capital federal. Ele conta a importância de conhecer diferentes etapas do trabalho e explica o porquê de ir a campo. “Existem três tipos de atuação: projeção, gerência e execução. Já passei pelas três: elaborei estudos para concretizar projetos; já gerenciei, acompanhando, fiscalizando e licitando projetos e obras; e também já executei obras”, relata. “Hoje, fico mais no escritório, mas recomendo todos a irem a campo, fazer de tudo, para ter uma visão global do processo”, diz.

Segundo Adelcke, as chances de emprego para engenheiros em Brasília são boas tanto no serviço público quanto na iniciativa privada. “Órgãos como a ANTT (Agência Nacional de Transportes Terrestres), a Codeplan (Companhia de Planejamento do Distrito Federal) e a Novacap (Companhia Urbanizadora da Nova Capital do Brasil) sempre precisam da gente. No setor privado, a construção se destaca, especialmente o ramo imobiliário”, afirma.

O engenheiro civil nascido e formado na capital federal Francisco Alves, 43 anos, atua no ramo de fiscalização de obras e define a Copa do Mundo de futebol como atraente para os colegas de profissão. “O leque de áreas de atuação é extenso (veja quadro). São muitas chances na construção civil, com o surgimento do Estádio Nacional de Brasília, a ampliação do aeroporto e a realização de outras obras pelo governo. Hoje, estudar engenharia civil é uma boa”, observa o servidor da Companhia Energética de Brasília (CEB).

O Centro Universitário do Distrito Federal (UDF) tem uma das oito faculdades de engenharia civil do DF reconhecidas pelo Ministério da Educação (MEC). Segundo o coordenador do curso, Feruccio Bilich, as fartas oportunidades estão atraindo alunos e até profissionais de outros campos de atuação para a área. “Temos vários estudantes na segunda graduação e transferidos de outros cursos. Há aluno que trabalhava com marketing e viu mais perspectivas na engenharia civil”, resume. Na universidade, o aluno fica em média cinco anos — os dois primeiros apresentam disciplinas básicas, como física, química e matemática, enquanto os outros três têm matérias de preparação para o mercado de trabalho, como geotecnia, hidráulica, hidrologia e transportes.

Onde estudar
Além da graduação da UDF, as faculdades de engenharia civil reconhecidas pelo Ministério da Educação (MEC) estão no Centro Universitário de Brasília (UniCeub), no Centro Universitário Planalto do Distrito Federal (Uniplan), no Instituto de Educação Superior de Brasília (Iesb), no Instituto de Ensino Superior Planalto (Iesplan), na Universidade Católica de Brasília (UCB), na Universidade de Brasília (UnB) e na Universidade Paulista (Unip).

segunda-feira, 2 de julho de 2012

Disparidades regionais na formação de doutores em Engenharia no Brasil


A região Sudeste destaca-se como a maior formadora de doutores em engenharia do país, com mais de 60% dos titulados de todo território brasileiro.

O número de doutores titulados nas áreas de engenharia cresce no Brasil no período que vai entre os anos 2000 e 2010. No primeiro ano da série, o país formou 5.318 doutores em alguma engenharia, ao passo que no último ano o número mais que dobra, passando para 11.314.
Se por um lado o número de doutores aumenta em todas as regiões do país, por outro notamos uma dinâmica bastante desigual no crescimento de pessoas tituladas. As disparidades no crescimento do número de titulados parece seguir uma lógica semelhante à lógica econômica em termos de participação regional no Produto Interno Bruto do país. No gráfico que segue, vemos a curva de crescimento dos doutorados em engenharia por região:
Número de doutores titulados nas áreas de engenharia por região
Fonte: GeoCapes, CAPES, 2000-2010. Elaboração: Observatório da Inovação e Competitividade.
Ao fazermos o ranking regional, a região Sudeste destaca-se como a maior formadora de doutores em engenharia do país, com mais de 60% dos titulados de todo território brasileiro. Seguindo o Sudeste vem a região Sul, seguida respectivamente pelo Nordeste, pelo Centro-Oeste e pelo Norte. Se olharmos para dentro das regiões, notaremos que as disparidades, além de inter-regionais, também são internas a cada uma delas. Quer dizer que os estados também possuem fortes disparidades em termos de formação de doutores nas áreas de engenharia. Mostramos no gráfico abaixo a curva de crescimento dos dois principais estados de cada região em termos de seu papel na formação de doutores em engenharia, comparado com o número total de titulados no Brasil:
Número de doutores titulados nas áreas de engenharia (dois Estados que mais titulam doutores por região)
Número de doutores titulados nas áreas de engenharia (dois Estados que mais titulam doutores por região)
Fonte: GeoCapes, CAPES, 2000-2010. Elaboração: Observatório da Inovação e Competitividade.
O estado de São Paulo, na região sudeste, é o líder em termos de número de doutores titulados por ano, sendo durante toda a série responsável pela formação de mais de 50% dos engenheiros doutores do país. O Rio de Janeiro, também no sudeste, é o segundo estado mais formando doutores em engenharia durante todo o período. Em seguida vem o Rio Grande do Sul, seguido pelos outros estados da federação, todos com menos de 1000 doutores formados durante todos os anos, incluindo o ano de 2010 [1].
Em termos mais gerais, o número de doutores em engenharia no país tem crescido, mais que dobrando em uma década. No entanto, pelos dados disponíveis, tanto no nível regional quanto no nível estadual, mostra imensa disparidade no número de engenheiros doutorados. Isso sugere que políticas devem ser desenvolvidas na busca de diminuir as diferenças regionais em termos de pós-graduação em engenharia no Brasil.
[1] Minas Gerais formou mais que 1000 doutores nas áreas da engenharia no ano de 2010. Porém, arbitrariamente, selecionamos aqui os dois estados de cada região que mais formam doutores nas áreas da engenharia, buscando mostrar as disparidades regionais no assunto tratado. Por estar atrás do Rio de Janeiro e de São Paulo na região Sudeste, Minas gerais não entrou em nossa amostra, apesar de ser um dos estados líderes em número de engenheiros doutorados.
Fonte: Engenharia Data
Publicado em: 02/07/12

segunda-feira, 25 de junho de 2012

Presidente da Abece não acredita em crise na engenharia



O Engenheiro Eduardo Barros Millen afirma que é hora de repensar e mudar os fatores que indiretamente contribuem para os colapsos nas construções. Para Millen, a qualidade da engenharia brasileira é o que ainda impede um número maior de acidentes

Kelly Carvalho

Na última década, o Brasil presenciou uma série de colapsos de edifícios novos, antigos e obras de infraestrutura que repercutiram negativamente no setor da construção. A recente queda de três prédios no Rio de Janeiro, na última quarta-feira (25), do edifício em obras Real Class em janeiro de 2011, em Belém, e a queda de vigas de 85 t de um viaduto em obras no trecho sul do Rodoanel Mario Covas, em São Paulo, atingindo dois carros e um caminhão, são apenas alguns dos exemplos dos acidentes recentes. Há muito tempo, lideranças e representantes setoriais vêm denunciando os problemas que indiretamente têm contribuído para esses desabamentos, como a má qualificação de mão de obra, prazos apertados, custos reduzidos, fiscalização inadequada e falta de manutenção. Nessa entrevista, o engenheiro estrutural Eduardo Barros Millen, presidente da Abece (Associação Brasileira de Engenharia e Consultoria Estrutural), fala sobre segurança das construções, projetos, prazos, exercício profissional e fiscalização. Confira:


Divulgação: Abece
A engenharia brasileira está em crise?
Não há crise em nossa engenharia com relação à segurança. Pelo contrário, porque temos engenheiros de alto nível técnico, não deixamos nenhuma crise se estabelecer. Mas temos de tomar providências, pois a engenharia está atendendo necessidades e prazo, embora com dificuldades, e isso poderia ser melhorado. Não estamos tendo mais acidentes porque a engenharia brasileira é de excelente qualidade. Senão, o número de acidentes seria muito maior.  A engenharia brasileira está no mesmo nível das grandes escolas do mundo. Perdemos um pouco com relação a equipamentos, mas a teoria de projeto e execução estão no patamar mais alto.
Mas nos últimos anos, verificamos uma sucessão de desabamentos de edifícios antigos e em execução, além de problemas com obras de infraestrutura. Esses colapsos estão aumentando?
Não é só impressão, há um aumento gradativo desses eventos desastrosos.  Como razão imediata, em consequência de algum erro de execução, de reforma eventualmente, de obras em construção. Mas essas são causas imediatas, temos que pensar um pouco mais nas causas conjunturais. Deve haver uma mudança de atitude dos profissionais, contratantes particulares ou governo e também do usuário final. Todo mundo tem que fazer um exame de consciência e mudar.
De uma forma geral, vemos uma série de problemas relacionados à qualificação profissional, manutenção e fiscalização. Como resolver todos esses aspectos para melhorar a segurança das construções?
Devemos começar pela própria formação dos engenheiros. Nos últimos anos, as escolas de engenharia têm reduzido o número de horas-aula. Um período de cinco anos já era pouco, mas as escolas têm graduado esses profissionais com quatro anos de curso, sem uma formação completa. O engenheiro sai de uma escola e vai trabalhar. Em qualquer lugar sempre haverá um prazo a cumprir e ele terá de se acostumar à forma de trabalho daquele local. Com formação adequada, ele tem base para se adaptar, caso contrário, terá muita dificuldade. Além disso, essa formação está muito genérica, sem as funções bem determinadas. A engenharia está evoluindo e as escolas não estão formando para essa evolução. Do ponto de vista escolar, tinha de haver estágios obrigatórios na área de atuação que o aluno pretende seguir. Por exemplo, se o aluno quisesse trabalhar em estruturas, precisaria ter estágio obrigatório nessa área. Isso teria que fazer parte do currículo.
Como o senhor vê a regulamentação do exercício profissional atualmente?
O Crea, como órgão regulador, não poderia dar um diploma e credencial para um recém-formado com os mesmos atributos de um profissional com 40 anos de experiência. Alguém com até cinco anos de experiência tem determinada possibilidade de assumir algum tipo de trabalho, mas nunca poderia, por exemplo, assumir a responsabilidade técnica de uma barragem. Precisa haver uma limitação de responsabilidade. Temos visto muitas construções sob responsabilidade de recém-formados porque não há mão de obra suficiente, mas esse engenheiro não tem a experiência necessária.
Mesmo com a carência de mão de obra, é senso comum no setor que a remuneração é baixa e tem prejudicado a qualidade das obras.
Temos deficiência de mão de obra porque a engenharia ficou sucateada por 20 anos, a partir da década de 1980. E ficamos esse período sem formar muitos engenheiros. Com essa falta de mão de obra, o nível salarial melhorou, mas está longe de ser coerente com a responsabilidade que assume um profissional de engenharia. Fazer um projeto estrutural, definir o aço, concreto e receber menos de meio por cento do valor da obra é uma afronta à engenharia e aos profissionais. É preciso pagar bem para que esse profissional trabalhe num regime normal, de oito horas. Vemos profissionais trabalhando 12 horas por dia para sobreviver. Isso cansa o engenheiro, mas porque ele é bom profissional e tem muita responsabilidade, está trabalhando e fazendo o máximo para cumprir os prazos exigidos.
Os prazos curtos também têm prejudicado o setor?
Ninguém mais quer fazer obra em prazo natural. O concreto, por exemplo, é um material que tem tempo para enrijecer e conferir a segurança necessária. Esse tempo tem sido reduzido pelos avanços na tecnologia do concreto, mas mesmo assim, os prazos têm de ser reestudados. A data de entrega da obra não pode ser diminuída por ganância, e as obras públicas não podem ser finalizadas com base nos prazos de campanhas políticas. Isso está errado. Vários desses estádios em construção terão problemas estruturais no futuro, porque estão sendo feitos de maneira muito veloz, sem os cuidados e critérios necessários.
Mas esse não é também um problema com relação à fiscalização? O que fazer minimamente para garantir a segurança nas construções?
Já faz parte da cultura internacional que o escritório que projeta passe seu trabalho para que outro escritório independente faça a verificação. No Brasil, esse procedimento está um pouco mais comum, mas ainda há profissionais de projeto que desconfiam quando outro faz essa verificação, como se quisesse denegrir seu trabalho. Não é nada disso. Essa argumentação é pouco resistente. Também é preciso tomar os devidos cuidados com programas computacionais. Computador é imprescindível, ninguém mais trabalha sem usar programas de calculo, execução, controle e gerenciamento, mas esses sistemas devem ser trabalhados com inteligência humana. Se o profissional não fizer uso dessas ferramentas de acordo com os critérios do programa, o resultado pode ser uma bobagem. E por falta de experiência, o engenheiro joga a informação no computador e ele acredita que o resultado está perfeito. É preciso fazer análise critica do resultado e só quem tem experiência pode fazer essa análise crítica. E isso não está sendo feito. Falta tempo, prazo, às vezes sai algo sem a devida verificação.
E quanto à fiscalização de obras?
Na obra é a mesma coisa. Executando, tem que ter uma fiscalização, mas não como a de hoje,  só para fazer medição. Ninguém se preocupa em saber se o concreto é adequado, se a armação está na posição correta, essas questões...
De que forma essa fiscalização deveria estar estruturada?
Devia existir algum mecanismo para exigência de fiscalização. Assim como a prefeitura exige, por exemplo, um alvará para construção, deveria exigir a responsabilidade de alguém que vai verificar a obra. Pode ser que não funcione, porque tem o engenheiro "canetinha", que assina e nem vai ver a obra - esses profissionais são um câncer para a engenharia - mas poderia ser feita uma verificação. Deveria ser feita uma concorrência para projeto e uma concorrência para verificação do projeto. É uma segurança a mais. Algumas autarquias do governo fazem esse tipo de verificação, como o metrô, que tem uma equipe técnica, embora sejam sobrecarregados, assim como Infraero, DER, pessoal de controle de barragens, mas a gente sempre nota que são profissionais com muito trabalho para fazer e com prazos apertados. É aquela pressão ruim.
De quem deveria ser, afinal, esse papel fiscalizador?
O poder público tem que organizar esse mundo todo. A fiscalização deveria ficar dentro de sua competência. Hoje o poder público recebe anteprojetos de arquitetura e aprova a execução da obra. A prefeitura não exige projetos executivos. Essa é uma luta de anos das entidades, para que as obras sejam contratadas por projeto executivo, porque haverá muito mais segurança. Em casos de prédios mais novos, como o de Belém do Pará que caiu durante a construção, há um projeto executivo, pode-se buscar informações com o projetista ou a construtora para descobrir as razões da queda e evitar essas causas. Mas a prefeitura deveria ter esses projetos. Se daqui a 30 anos cair um prédio, a prefeitura não terá um projeto executivo. Veja o caso do desabamento no Rio de Janeiro. Então, a exigência desses projetos é uma necessidade.
No caso específico do desabamento de três edifícios no Rio de Janeiro, o primeiro que caiu teria sofrido uma série de intervenções ao longo dos anos, como acréscimo de pavimentos, aberturas de vãos em empenas cegas, entre outros. Essas reformas poderiam ter sido feitas, antes mesmo da última intervenção que teria causado o colapso?
A reforma que estava em andamento é considerada a causa mais provável, não importa se o prédio tinha mais ou menos pilares. Seguramente algum fato que ocorreu causou o colapso. Se o prédio estava lá ate hoje, alguma resistência tinha. Estava com a estrutura adequada e estável, porque ficou anos lá. Mas foi feita alguma modificação, na minha interpretação, alguma coluna foi afetada.
A  prefeitura poderia ter evitado esse colapso se soubesse da reforma?Para qualquer reforma, é obrigatória a obtenção de autorização da prefeitura. Mas a prefeitura vai observar a área em que será realizada a reforma, se não haverá uma invasão de calçada, por exemplo, mas não vai verificar a parte estrutural. Então, não ia adiantar nada se a prefeitura tivesse recebido essa solicitação.